Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 103 (2) K $0.19 \times 0.16 \times 0.01 \text{ mm}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(4-acetamidophenoxymethyl)methanol 0.7-hydrate

Damon A. Parrish,^a* Katie Juromski,^b Anne Marteel-Parrish,^b Reddy Damavarapu,^c Maoxi Zang^c and Dave **Paritosh**^c

^aLaboratory for the Structure of Matter, Code 6030, Naval Research Laboratory, Washington, DC 20375, USA, ^bWashington College, 300 Washington Avenue, Chestertown, MD 21620, USA, and ^cGeocenters, Inc., Building 3028, Picatinny Arsenal, NJ 07806-5000, USA

Correspondence e-mail: damon.parrish@nrl.navy.mil

Received 12 September 2008; accepted 6 October 2008

Key indicators: single-crystal X-ray study; T = 103 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.057; wR factor = 0.131; data-toparameter ratio = 12.5.

The asymmetric unit of the title compound, C₂₈H₃₁N₃O₇--0.7H₂O, contains a molecule of tris(4-acetamidophenoxymethyl)methanol and 0.7 of a water molecule. An extensive hydrogen-bonding network includes interactions between all components of the crystal structure.

Related literature

For related structures, see: Haisa et al. (1980).

Experimental

Crystal data $C_{28}H_{31}N_3O_7 \cdot 0.7H_2O$

 $M_r = 534.17$

Monoclinic, $P2_1/c$ a = 9.4900 (9) Å b = 29.992 (3) Å c = 9.3879 (9) Å $\beta = 90.257 \ (2)^{\circ}$ V = 2672.0 (4) Å³

Data collection

Bruker SMART APEXII CCD	21154 measured reflections
diffractometer	4527 independent reflections
Absorption correction: multi-scan	3113 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.070$
$T_{\min} = 0.749, \ T_{\max} = 1.000$	
(expected range = 0.748 - 0.999)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of
$wR(F^2) = 0.131$	independent and constrained
S = 1.10	refinement
4527 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
363 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1		_	
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O13A^{i}$	0.84	1.97	2.798 (3)	167
$O1S - H1SB \cdot \cdot \cdot O13A^{ii}$	0.85 (4)	2.00 (4)	2.842 (4)	168 (4)
$N10C - H10A \cdots O13C^{iii}$	0.88	1.95	2.812 (4)	167
$N10B - H10B \cdots O13B^{iv}$	0.88	1.95	2.824 (4)	175
$N10A - H10C \cdot \cdot \cdot O3C^{v}$	0.88	2.36	3.197 (3)	159
$O1S - H1SA \cdots O13C$	0.85 (4)	1.98 (5)	2.817 (5)	167 (5)
Symmetry codes: (i) x, y, z	z + 1; (ii) $-x$	+1, -v + 1, -v	-z; (iii) $x, -y$	$+\frac{1}{2}$, $z - \frac{1}{2}$; (iv)

 $x, -y + \frac{3}{2}, z + \frac{1}{2}; (v) - x, -y + 1, -z.$

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: SAINT (Bruker, 2002) and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Crystallographic studies were supported in part by the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2305).

References

Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Haisa, M., Kashino, S., Ueno, T., Shinozaki, N. & Matsuzaki, Y. (1980). Acta Cryst. B36, 2306-2311.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, o2201 [doi:10.1107/S1600536808032194]

Tris(4-acetamidophenoxymethyl)methanol 0.7-hydrate

D. A. Parrish, K. Juromski, A. Marteel-Parrish, R. Damavarapu, M. Zang and D. Paritosh

Comment

Tris(4-acetamidophenoxymethyl) methanol is one of the key ingredients of a cast-curable explosive formulation. The material exists as a liquid when hot and can be poured into a mold of any desired shape. Upon cooling, the material forms a highly stable solid explosive. The title compound has been characterized crystallographically as a 0.7 water solvate, (I), Fig. 1. The derived geometric parameters are comparable to those observed for the related compound N-(4-Methoxyphenyl)acetamide (Haisa *et al.*, 1980). The crystal structure of (I) is stabilized by an extensive network of hydrogen bonding interactions, Table 1.

Experimental

4-Acetamidophenol (179 mg, 1.19 mmol) and 2,2-bis(chloromethyloxirane) (54 mg, 0.38 mmol) were heated at 90 °C in the presence of K₂CO₃ (197 mg, 1.43 mmol) in acetonitrile (5 ml) for 22 h. After cooling to room temperature, the reaction mixture was poured into water (5 ml) and the precipitate was extracted with ethyl acetate (3 × 20 ml, if the precipitate can not be dissolved in ethyl acetate completely, about 5 ml of acetone was added to improve the solubility). The organic phase was washed with water (10 ml) and dried over Na₂SO₄. The solvent was evaporated *in vacuo* and the residue was recrystallized from hot ethyl acetate. The molecule was obtained as a white solid, 82 mg (44%); m.p. = 486 K, ¹H NMR (DMSO-d₆) δ 9.75 (s, 3H), 7.45 (d, *J* = 8.8 Hz, 6H), 6.88 (d, *J* = 8.8 Hz, 6H), 5.50 (bs, 1H), 4.09 (s, 6H), 1.99 (s, 9H) p.p.m. ¹³C NMR (CDCl₃) δ 168.1, 154.8, 133.2, 120.8, 115.1, 72.9, 69.7, 24.2 p.p.m. A clear colorless crystal of (I) was grown by slow evaporation from ethyl acetate and characterized as a 0.7 hydrate (from fractional refinement).

Refinement

The non-water H atoms were included in the riding model approximation with O—H = 0.84, N—H = 0.88 and C—H = 0.95–0.99 Å, and with U(H) set to $1.2-1.5U_{eq}(O, N \text{ and } C)$. The population of the solvent water molecule was allowed to refine. The result was a population of 0.70. The H atoms were refined with O—H = 0.850 (1) and with $U(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. View of (I) showing the atom labeling for the non-hydrogen atoms. Displacement ellipsoids are shown at the 50% probability level.

N,N',N''-{[hydroxymethylidynetris(methyleneoxy)]tri-p-phenylene}triacetamide 0.7-hydrate

Crystal	data
---------	------

$C_{28}H_{31}N_3O_7 \cdot 0.7H_2O$	Z = 4
$M_r = 534.17$	$F_{000} = 1132$
Monoclinic, $P2_1/c$	$D_{\rm x} = 1.328 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.4900 (9) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 29.992 (3) Å	T = 103 (2) K
c = 9.3879 (9) Å	Plate, colourless
$\beta = 90.257 \ (2)^{\circ}$	$0.19 \times 0.16 \times 0.01 \text{ mm}$
$V = 2672.0 (4) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD diffractometer	4527 independent reflections
Radiation source: fine focus sealed tube	3113 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.070$
T = 103(2) K	$\theta_{\text{max}} = 24.7^{\circ}$
ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -11 \rightarrow 11$
$T_{\min} = 0.749, T_{\max} = 1.000$	$k = -35 \rightarrow 35$
21154 measured reflections	$l = -11 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.0231P)^2 + 4.8705P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
4527 reflections	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
363 parameters	$\Delta \rho_{\rm min} = -0.25 \ e \ {\rm \AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) \boldsymbol{Z} х y 01 0.0218(5)0.2725 (2) 0.50948 (7) 0.3966 (2) H1 0.2221 0.5325 0.4010 0.026* C1 0.2790 (4) 0.0185 (7) 0.3672 (3) 0.51325 (10) O1S 0.0400(14)0.8382(4)0.34434(13)0.7394(4)0.700(7)0.048* 0.700(7) H1SA 0.774 (4) 0.3262 (15) 0.713 (6) H1SB 0.048* 0.700(7)0.848(6)0.3678 (11) 0.690(5)C2A 0.2906(3)0.50761 (10) 0.1358 (4) 0.0204(7)H2AA 0.3598 0.025* 0.5039 0.0581 H2AB 0.2294 0.4809 0.1383 0.025* C2B 0.4378 (3) 0.55887 (10) 0.2908 (4) 0.0199(7) H2BA 0.3652 0.5825 0.2948 0.024* H2BB 0.4948 0.5604 0.3792 0.024* C2C 0.4724 (3) 0.47572 (10) 0.2976 (4) 0.0191 (7) H2CA 0.5415 0.4760 0.2188 0.023* 0.4791 H2CB 0.5241 0.3888 0.023* O3C 0.3941 (2) 0.43482 (7) 0.2967 (2) 0.0213 (5) O3B 0.5258 (2) 0.56558(7) 0.1702 (2) 0.0217 (5) 03A 0.2078 (2) 0.54665 (7) 0.1123 (2) 0.0228 (5) C4C 0.4656 (3) 0.39563 (10) 0.3235 (3) 0.0191 (7) C4B 0.5890(3) 0.60715 (10) 0.1605 (4) 0.0183 (7) C4A 0.1464 (3) 0.55113 (11) -0.0198(4)0.0194 (7) C5B 0.5688 (3) 0.64155 (10) 0.2563 (4) 0.0208 (8) H5BA 0.5047 0.6382 0.3330 0.025* C5C 0.6078 (3) 0.39279 (11) 0.3552 (4) 0.0216 (8) H5CA 0.6641 0.4189 0.3592 0.026* C5A 0.0895 (3) 0.59256 (11) -0.0490(4)0.0237 (8) H5AA 0.0981 0.6160 0.0186 0.028* C6B 0.6432 (3) 0.2392 (4) 0.0202 (7) 0.68105 (10) H6BA 0.6286 0.7049 0.3041 0.024* C6C 0.6673 (4) 0.3811 (4) 0.0228 (8) 0.35123 (11) H6CA 0.7648 0.3491 0.4032 0.027* C6A 0.0198 (3) 0.59996 (11) -0.1769(4)0.0242 (8) 0.029* H6AA -0.01840.6286 -0.1971

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7B	0.7386 (3)	0.68620 (10)	0.1289 (3)	0.0169 (7)
C7C	0.5864 (3)	0.31298 (10)	0.3752 (3)	0.0193 (7)
C7A	0.0054 (3)	0.56569 (11)	-0.2758 (4)	0.0218 (8)
C8C	0.3838 (4)	0.35737 (11)	0.3158 (4)	0.0247 (8)
H8CA	0.2865	0.3595	0.2926	0.030*
C8B	0.7549 (4)	0.65171 (11)	0.0316 (4)	0.0233 (8)
H8BA	0.8179	0.6550	-0.0460	0.028*
C8A	0.0660 (4)	0.52477 (12)	-0.2465 (4)	0.0278 (8)
H8AA	0.0586	0.5014	-0.3145	0.033*
C9B	0.6799 (4)	0.61262 (11)	0.0474 (4)	0.0230 (8)
H9BA	0.6908	0.5893	-0.0202	0.028*
C9C	0.4435 (4)	0.31615 (11)	0.3418 (4)	0.0257 (8)
Н9СА	0.3873	0.2900	0.3368	0.031*
C9A	0.1373 (4)	0.51726 (11)	-0.1193 (4)	0.0269 (8)
H9AA	0.1796	0.4891	-0.1009	0.032*
N10C	0.6469 (3)	0.26989 (9)	0.3956 (3)	0.0226 (7)
H10A	0.6636	0.2533	0.3202	0.027*
N10B	0.8192 (3)	0.72619 (8)	0.1210 (3)	0.0198 (6)
H10B	0.8368	0.7399	0.2021	0.024*
N10A	-0.0753 (3)	0.57205 (10)	-0.4032 (3)	0.0264 (7)
H10C	-0.1676	0.5699	-0.3983	0.032*
C11C	0.6794 (4)	0.25360 (11)	0.5244 (4)	0.0266 (8)
C11B	0.8710 (3)	0.74511 (11)	0.0031 (4)	0.0205 (8)
C11A	-0.0173 (4)	0.58104 (10)	-0.5292 (4)	0.0201 (8)
C12A	-0.1164 (4)	0.58705 (12)	-0.6517 (4)	0.0314 (9)
H12A	-0.0723	0.5760	-0.7390	0.047*
H12B	-0.1386	0.6188	-0.6628	0.047*
H12C	-0.2033	0.5703	-0.6338	0.047*
C12B	0.9471 (4)	0.78871 (11)	0.0263 (4)	0.0317 (9)
H12D	1.0185	0.7926	-0.0478	0.048*
H12E	0.9928	0.7885	0.1201	0.048*
H12F	0.8793	0.8133	0.0216	0.048*
C12C	0.7326 (5)	0.20622 (12)	0.5285 (4)	0.0425 (11)
H12G	0.8116	0.2041	0.5957	0.064*
H12H	0.7643	0.1975	0.4333	0.064*
H12I	0.6566	0.1863	0.5591	0.064*
O13B	0.8573 (3)	0.72890 (8)	-0.1172 (3)	0.0296 (6)
O13A	0.1115 (2)	0.58529 (8)	-0.5433 (3)	0.0280 (6)
O13C	0.6634 (3)	0.27573 (8)	0.6346 (3)	0.0339 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0250 (13)	0.0198 (12)	0.0207 (13)	0.0008 (10)	0.0025 (10)	0.0016 (10)
C1	0.0193 (17)	0.0174 (17)	0.0186 (19)	0.0005 (14)	0.0012 (14)	0.0024 (14)
O1S	0.059 (3)	0.034 (3)	0.027 (3)	-0.013 (2)	0.001 (2)	0.0084 (18)
C2A	0.0218 (18)	0.0155 (17)	0.024 (2)	0.0035 (14)	-0.0047 (15)	0.0014 (14)
C2B	0.0248 (18)	0.0182 (17)	0.0167 (19)	0.0016 (14)	0.0021 (15)	0.0017 (14)

C2C	0.0220 (17)	0.0153 (16)	0.0200 (19)	-0.0026 (14)	-0.0029 (14)	0.0026 (14)
O3C	0.0207 (12)	0.0131 (11)	0.0301 (14)	-0.0012 (10)	-0.0063 (10)	0.0029 (10)
O3B	0.0276 (12)	0.0179 (12)	0.0196 (14)	-0.0022 (10)	0.0062 (10)	-0.0010 (10)
O3A	0.0289 (13)	0.0188 (12)	0.0207 (14)	0.0067 (10)	-0.0066 (10)	-0.0004 (10)
C4C	0.0268 (18)	0.0152 (17)	0.0153 (19)	0.0027 (14)	-0.0017 (14)	0.0004 (14)
C4B	0.0222 (17)	0.0133 (16)	0.0193 (19)	-0.0002 (14)	-0.0020 (15)	0.0024 (14)
C4A	0.0184 (17)	0.0223 (18)	0.0176 (19)	0.0001 (14)	0.0001 (14)	0.0003 (15)
C5B	0.0214 (17)	0.0208 (17)	0.0200 (19)	-0.0015 (14)	0.0044 (15)	0.0006 (15)
C5C	0.0229 (18)	0.0163 (17)	0.026 (2)	-0.0040 (14)	-0.0040 (15)	-0.0008 (15)
C5A	0.0282 (19)	0.0209 (18)	0.022 (2)	0.0030 (15)	-0.0009 (16)	0.0004 (15)
C6B	0.0237 (18)	0.0149 (17)	0.022 (2)	0.0031 (14)	-0.0010 (15)	-0.0042 (14)
C6C	0.0235 (18)	0.0215 (19)	0.023 (2)	0.0034 (15)	-0.0040 (15)	-0.0019 (15)
C6A	0.0239 (18)	0.0216 (18)	0.027 (2)	0.0053 (15)	0.0028 (16)	0.0072 (16)
C7B	0.0203 (17)	0.0146 (16)	0.0158 (18)	0.0003 (13)	-0.0005 (14)	0.0021 (14)
C7C	0.0284 (19)	0.0171 (17)	0.0124 (18)	0.0040 (15)	0.0003 (14)	-0.0003 (14)
C7A	0.0140 (16)	0.031 (2)	0.020 (2)	-0.0007 (15)	0.0003 (14)	0.0051 (16)
C8C	0.0218 (18)	0.0222 (18)	0.030 (2)	-0.0009 (15)	-0.0044 (15)	0.0029 (16)
C8B	0.0311 (19)	0.0214 (18)	0.017 (2)	-0.0016 (16)	0.0071 (15)	0.0024 (15)
C8A	0.035 (2)	0.0242 (19)	0.025 (2)	0.0022 (16)	-0.0085 (17)	-0.0027 (16)
C9B	0.0315 (19)	0.0188 (18)	0.019 (2)	0.0031 (15)	0.0024 (16)	-0.0026 (14)
C9C	0.031 (2)	0.0189 (18)	0.027 (2)	-0.0048 (15)	-0.0006 (16)	-0.0007 (16)
C9A	0.034 (2)	0.0193 (18)	0.028 (2)	0.0061 (16)	-0.0109 (17)	-0.0016 (16)
N10C	0.0371 (17)	0.0143 (14)	0.0165 (16)	0.0061 (13)	-0.0005 (13)	-0.0032 (12)
N10B	0.0256 (15)	0.0167 (14)	0.0170 (16)	-0.0010 (12)	0.0000 (12)	-0.0006 (12)
N10A	0.0159 (14)	0.0404 (18)	0.0228 (18)	0.0002 (13)	-0.0046 (13)	0.0068 (14)
C11C	0.033 (2)	0.0179 (18)	0.029 (2)	0.0020 (16)	0.0021 (17)	0.0042 (16)
C11B	0.0226 (18)	0.0190 (17)	0.020 (2)	0.0037 (14)	0.0012 (15)	0.0016 (15)
C11A	0.0230 (19)	0.0137 (16)	0.023 (2)	0.0040 (14)	-0.0035 (15)	-0.0019 (14)
C12A	0.040 (2)	0.0263 (19)	0.028 (2)	0.0026 (17)	-0.0091 (17)	-0.0021 (17)
C12B	0.041 (2)	0.0231 (19)	0.031 (2)	-0.0065 (17)	0.0056 (18)	0.0015 (17)
C12C	0.070 (3)	0.024 (2)	0.033 (2)	0.015 (2)	-0.002 (2)	0.0031 (18)
O13B	0.0481 (16)	0.0227 (13)	0.0180 (14)	-0.0045 (12)	0.0022 (12)	0.0025 (11)
O13A	0.0245 (14)	0.0340 (14)	0.0254 (15)	-0.0010 (11)	-0.0015 (11)	0.0024 (11)
O13C	0.0609 (18)	0.0208 (13)	0.0200 (15)	0.0049 (12)	0.0006 (13)	0.0017 (11)

Geometric parameters (Å, °)

O1—C1	1.431 (4)	C7B—C8B	1.389 (4)
O1—H1	0.8400	C7B—N10B	1.425 (4)
C1—C2C	1.515 (4)	C7C—C9C	1.394 (5)
C1—C2B	1.527 (4)	C7C—N10C	1.426 (4)
C1—C2A	1.534 (5)	C7A—C8A	1.382 (5)
O1S—H1SA	0.85 (4)	C7A—N10A	1.430 (4)
O1S—H1SB	0.85 (4)	C8C—C9C	1.381 (5)
C2A—O3A	1.427 (4)	C8C—H8CA	0.9500
C2A—H2AA	0.9900	C8B—C9B	1.380 (5)
C2A—H2AB	0.9900	C8B—H8BA	0.9500
C2B—O3B	1.425 (4)	C8A—C9A	1.389 (5)
C2B—H2BA	0.9900	С8А—Н8АА	0.9500

C2B—H2BB	0.9900	С9В—Н9ВА	0.9500
C2C—O3C	1.434 (4)	С9С—Н9СА	0.9500
C2C—H2CA	0.9900	С9А—Н9АА	0.9500
C2C—H2CB	0.9900	N10C—C11C	1.338 (4)
O3C—C4C	1.380 (4)	N10C—H10A	0.8800
O3B—C4B	1.387 (4)	N10B—C11B	1.340 (4)
O3A—C4A	1.374 (4)	N10B—H10B	0.8800
C4C—C5C	1.383 (5)	N10A—C11A	1.334 (4)
C4C—C8C	1.387 (5)	N10A—H10C	0.8800
C4B—C9B	1.381 (5)	C11C—O13C	1.239 (4)
C4B—C5B	1.383 (4)	C11C—C12C	1.509 (5)
C4A—C5A	1.382 (4)	C11B—O13B	1.236 (4)
C4A—C9A	1.383 (5)	C11B—C12B	1.509 (5)
C5B—C6B	1.389 (4)	C11A—O13A	1.237 (4)
C5B—H5BA	0.9500	C11A—C12A	1.493 (5)
C5C—C6C	1.389 (5)	C12A—H12A	0.9800
С5С—Н5СА	0.9500	C12A—H12B	0.9800
C5A—C6A	1.386 (5)	C12A—H12C	0.9800
С5А—Н5АА	0.9500	C12B—H12D	0.9800
C6B—C7B	1.387 (5)	C12B—H12E	0.9800
C6B—H6BA	0.9500	C12B—H12F	0.9800
C6C—C7C	1.381 (5)	C12C—H12G	0.9800
С6С—Н6СА	0.9500	С12С—Н12Н	0.9800
C6A—C7A	1.392 (5)	C12C—H12I	0.9800
С6А—Н6АА	0.9500		
C1—O1—H1	109.5	C6C—C7C—N10C	121.6 (3)
O1—C1—C2C	105.6 (3)	C9C—C7C—N10C	118.8 (3)
O1—C1—C2B	107.0 (3)	C8A—C7A—C6A	118.9 (3)
C2C—C1—C2B	111.6 (3)	C8A—C7A—N10A	120.4 (3)
O1—C1—C2A	111.8 (3)	C6A—C7A—N10A	120.7 (3)
C2CC1C2A	109.2 (3)	C9C—C8C—C4C	120.1 (3)
C2B—C1—C2A	111.6 (3)	С9С—С8С—Н8СА	119.9
H1SA—O1S—H1SB	116 (6)	C4C—C8C—H8CA	119.9
O3A—C2A—C1	107.7 (3)	C9B—C8B—C7B	120.2 (3)
O3A—C2A—H2AA	110.2	C9B—C8B—H8BA	119.9
C1—C2A—H2AA	110.2	C7B—C8B—H8BA	119.9
O3A—C2A—H2AB	110.2	C7A—C8A—C9A	121.1 (3)
C1—C2A—H2AB	110.2	С7А—С8А—Н8АА	119.5
H2AA—C2A—H2AB	108.5	С9А—С8А—Н8АА	119.5
O3B—C2B—C1	109.1 (3)	C8B—C9B—C4B	120.5 (3)
O3B—C2B—H2BA	109.9	С8В—С9В—Н9ВА	119.7
С1—С2В—Н2ВА	109.9	С4В—С9В—Н9ВА	119.7
O3B—C2B—H2BB	109.9	C8C—C9C—C7C	119.9 (3)
C1—C2B—H2BB	109.9	С8С—С9С—Н9СА	120.0
H2BA—C2B—H2BB	108.3	С7С—С9С—Н9СА	120.0
O3C—C2C—C1	107.1 (2)	C4A—C9A—C8A	119.4 (3)
O3C—C2C—H2CA	110.3	С4А—С9А—Н9АА	120.3
C1—C2C—H2CA	110.3	С8А—С9А—Н9АА	120.3
O3C—C2C—H2CB	110.3	C11C-N10C-C7C	122.9 (3)

C1—C2C—H2CB	110.3	C11C—N10C—H10A	118.6
H2CA—C2C—H2CB	108.6	C7C—N10C—H10A	118.6
C4C—O3C—C2C	118.2 (2)	C11B—N10B—C7B	126.8 (3)
C4B—O3B—C2B	115.8 (2)	C11B—N10B—H10B	116.6
C4A—O3A—C2A	116.8 (2)	C7B—N10B—H10B	116.6
O3C—C4C—C5C	124.8 (3)	C11A—N10A—C7A	123.2 (3)
O3C—C4C—C8C	114.8 (3)	C11A—N10A—H10C	118.4
C5C—C4C—C8C	120.4 (3)	C7A—N10A—H10C	118.4
C9B—C4B—C5B	120.0 (3)	O13C-C11C-N10C	122.0 (3)
C9B—C4B—O3B	115.4 (3)	O13C-C11C-C12C	121.7 (3)
C5B—C4B—O3B	124.5 (3)	N10C-C11C-C12C	116.3 (3)
O3A—C4A—C5A	115.5 (3)	O13B—C11B—N10B	123.4 (3)
O3A—C4A—C9A	124.3 (3)	O13B—C11B—C12B	121.4 (3)
C5A—C4A—C9A	120.2 (3)	N10B—C11B—C12B	115.1 (3)
C4B—C5B—C6B	119.3 (3)	O13A—C11A—N10A	121.9 (3)
C4B—C5B—H5BA	120.3	O13A—C11A—C12A	121.6 (3)
C6B—C5B—H5BA	120.3	N10A—C11A—C12A	116.5 (3)
C4C—C5C—C6C	119.2 (3)	C11A—C12A—H12A	109.5
C4C—C5C—H5CA	120.4	C11A—C12A—H12B	109.5
C6C—C5C—H5CA	120.4	H12A—C12A—H12B	109.5
C4A—C5A—C6A	120.0 (3)	C11A—C12A—H12C	109.5
С4А—С5А—Н5АА	120.0	H12A—C12A—H12C	109.5
С6А—С5А—Н5АА	120.0	H12B—C12A—H12C	109.5
C7B—C6B—C5B	121.0 (3)	C11B—C12B—H12D	109.5
С7В—С6В—Н6ВА	119.5	C11B—C12B—H12E	109.5
С5В—С6В—Н6ВА	119.5	H12D—C12B—H12E	109.5
C7C—C6C—C5C	120.9 (3)	C11B—C12B—H12F	109.5
С7С—С6С—Н6СА	119.6	H12D—C12B—H12F	109.5
С5С—С6С—Н6СА	119.6	H12E—C12B—H12F	109.5
C5A—C6A—C7A	120.3 (3)	C11C—C12C—H12G	109.5
С5А—С6А—Н6АА	119.8	C11C—C12C—H12H	109.5
С7А—С6А—Н6АА	119.8	H12G—C12C—H12H	109.5
C6B—C7B—C8B	118.9 (3)	C11C—C12C—H12I	109.5
C6B—C7B—N10B	119.0 (3)	H12G—C12C—H12I	109.5
C8B—C7B—N10B	122.1 (3)	H12H—C12C—H12I	109.5
C6C—C7C—C9C	119.5 (3)		
O1—C1—C2A—O3A	71.9 (3)	C5C—C6C—C7C—N10C	177.3 (3)
C2C—C1—C2A—O3A	-171.7 (2)	C5A—C6A—C7A—C8A	-2.3 (5)
C2B—C1—C2A—O3A	-47.8 (3)	C5A—C6A—C7A—N10A	175.3 (3)
O1—C1—C2B—O3B	-175.9 (2)	O3C—C4C—C8C—C9C	-179.5 (3)
C2C—C1—C2B—O3B	69.1 (3)	C5C—C4C—C8C—C9C	0.9 (5)
C2A—C1—C2B—O3B	-53.4 (3)	C6B—C7B—C8B—C9B	-1.7 (5)
O1—C1—C2C—O3C	59.4 (3)	N10B—C7B—C8B—C9B	176.7 (3)
C2B—C1—C2C—O3C	175.2 (3)	C6A—C7A—C8A—C9A	1.5 (5)
C2A—C1—C2C—O3C	-60.9 (3)	N10A—C7A—C8A—C9A	-176.1 (3)
C1—C2C—O3C—C4C	-174.9 (3)	C7B—C8B—C9B—C4B	-0.7 (5)
C1—C2B—O3B—C4B	175.3 (3)	C5B—C4B—C9B—C8B	2.3 (5)
C1—C2A—O3A—C4A	171.0 (3)	O3B—C4B—C9B—C8B	-176.3 (3)
C2C—O3C—C4C—C5C	1.8 (5)	C4C—C8C—C9C—C7C	-0.3 (5)

C2C—O3C—C4C—C8C	-177.8 (3)	C6C—C7C—C9C—C8C	-0.4 (5)
C2B—O3B—C4B—C9B	176.8 (3)	N10C-C7C-C9C-C8C	-177.4 (3)
C2B—O3B—C4B—C5B	-1.7 (4)	O3A—C4A—C9A—C8A	176.4 (3)
C2A—O3A—C4A—C5A	-168.4 (3)	C5A—C4A—C9A—C8A	-2.4 (5)
C2A—O3A—C4A—C9A	12.8 (5)	C7A—C8A—C9A—C4A	0.8 (5)
C9B—C4B—C5B—C6B	-1.5 (5)	C6C—C7C—N10C—C11C	78.5 (4)
O3B—C4B—C5B—C6B	176.9 (3)	C9C—C7C—N10C—C11C	-104.7 (4)
O3C—C4C—C5C—C6C	179.5 (3)	C6B—C7B—N10B—C11B	-151.8 (3)
C8C—C4C—C5C—C6C	-0.9 (5)	C8B-C7B-N10B-C11B	29.9 (5)
O3A—C4A—C5A—C6A	-177.2 (3)	C8A—C7A—N10A—C11A	-82.6 (4)
C9A—C4A—C5A—C6A	1.7 (5)	C6A—C7A—N10A—C11A	99.9 (4)
C4B—C5B—C6B—C7B	-0.9 (5)	C7C—N10C—C11C—O13C	-2.6 (5)
C4C—C5C—C6C—C7C	0.2 (5)	C7C-N10C-C11C-C12C	175.6 (3)
C4A—C5A—C6A—C7A	0.7 (5)	C7B-N10B-C11B-O13B	-1.9 (5)
C5B—C6B—C7B—C8B	2.5 (5)	C7B-N10B-C11B-C12B	177.3 (3)
C5B-C6B-C7B-N10B	-176.0 (3)	C7A—N10A—C11A—O13A	-1.3 (5)
C5C—C6C—C7C—C9C	0.5 (5)	C7A—N10A—C11A—C12A	-179.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1···O13A ⁱ	0.84	1.97	2.798 (3)	167
O1S—H1SB…O13A ⁱⁱ	0.85 (4)	2.00 (4)	2.842 (4)	168 (4)
N10C—H10A…O13C ⁱⁱⁱ	0.88	1.95	2.812 (4)	167
N10B—H10B…O13B ^{iv}	0.88	1.95	2.824 (4)	175
N10A—H10C···O3C ^v	0.88	2.36	3.197 (3)	159
O1S—H1SA···O13C	0.85 (4)	1.98 (5)	2.817 (5)	167 (5)
~				

Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z; (iii) x, -y+1/2, z-1/2; (iv) x, -y+3/2, z+1/2; (v) -x, -y+1, -z.

